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SUMMARY

Analytical and experimental researcL within the area of unsteady aero-
dynamics of turbomachinery has conventiorally been applied to blading which
oscillates when placed in a uniformly flowing fluid. Comparatively less effort
has been offered for the study of bladinc which is subjected to nonuniformities
within the flow field. The fluid dynamic environment of a blade-row embedded
within multi-stage turbomachines is domir, ated by such highly unsteady fluid
flow conditions, The production of wakes and circumferentia] pressure varia-
tions from adjacent b]ade-rows causes ]a_ge unsteady energy transfers between
the fluid and the blades. Determination of the forced response of a blade
requires the ability to predict the unsteady loads which are induced by these
aerodynamic sources.

A review of the research publicatior_s was performed to determine the
recent efforts to investigate the responte of turbomachinery blading subjected
to aerodynamic excitations. Such excitations are a direct result of the blade-
row aerodynamic interaction which occurs between adjacent cascades of blades.
The reports and papers reviewed w_thin tl_is report have been organized into

areas which emphasized experimental or analytical efforts.

INTRODU]TION

This document describes the finding_ of a literature review which was con-
ducted within the area of blade-row aerodynamic interaction. The motivation
for such a review was to determine the current state of the technology for
measuring and predlcting aerodynamic interaction within turbomachinery blade
rows. The review was specifically focussed on those research papers and reports
which were related to turbomachinery coml)onents such as fans, compressors, and
turbines.

The current state-of-the-art design techniques for estimating the forced
response of turbomachinery blading is deficient in terms of quantitatively pre-
dicting blade response levels. The Campbell diagram method of estimating the
occurrence of forced response problems c:_n only indicate the likelihood of
encountering a significant resonant condition. Unfortunately, no method is
currently available which can predict the actual level of vibratory stress
caused by aerodynamic excitations.

The apparent confusion regarding which type of aerodynamically induced
forcing function causes the greatest forced response problems has necessitated
the drive to perform a literature review. Recent forced response problems
which have occurred within the Space Shuttle Main Engine (SSME) turbopump tur-
bines underscores the need for an advanced analytical tool which can account
for the many unsteady aerodynamic loads and predict the blade response to such
loads.



The construction of an accurate forced response analytical capability

requires that an embedded blade-row can be suitably isolated from the other

components of the machine and analyzed separately. This isolation necessitates

replacing the physically adjacent rotating blade rows with the proper aero-

dynamic forcing functions which they induce. Figure l shows how the presence

of adjacent blade-rows and upstream stages complicates the process of isolating

a specific blade-row for detailed dynamic analysis. Specification of the

replacement forcing functions requires that the level of aerodynamic interac-

tion between blade-rows can be determined. Proper definition of the relevant

aerodynamic forcing functions is the key to solving the forced response problem
for such multi-blade-row machines.

An aeroelastic forced response system, the Forced Response Prediction Sys-

tem (FREPS), is being assembled to address the specific problem of quantifying

the aerodynamic forcing functions. This computer program is intended to give

the turbomachinery designer a tool for prediction of actual blade vibratory

response levels resulting from aerodynamic disturbances. FREPS will provide

dynamic response information which can be used to estimate the vibrational
stresses and blade life.

Proper development of aerodynamic forcing function models dictates a need

to fully understand the energy transport processes which exist between adjacent

blade-rows. This energy transfer is commonly referred to in the open litera-

ture as "blade-row aerodynamic interaction." Aerodynamic interaction between

blade-rows (i.e., stator/rotor) occurs in the form of periodic disturbances in

the velocity and potential fields within the machine. These disturbances

result because of the unsteadiness due to adjacent blade-rows undergoing rela-

tive motion. Such disturbances propagate into the cascade from both upstream

and downstream to excite the isolated blade (fig. 2). Generalization of these

aerodynamic forcing functions can often be reduced to a definition of those

disturbances due to (l) viscous wake passing and (2) potential-field distur-

bances (pressure waves).

The level of unsteadiness of these fluctuations is typically very high
(reduced frequency based on semichord k : 2 - 20) because they are generated
at blade number multiples of the engine speed. The magnitude of the induced
unsteady loads which these disturbances cause are fairly low, typically
5 percent of steady blade loads. But the lack of sufficient damping, both
aerodynamic and structural, can drive the blades to large deflections, espe-
cially when approaching a resonant condition. The cumulative effect of these
unsteady deformations is to reduce the effective design life of the component.

A search of the publications from NASA, AIAA, ASME, STAR, and DOD was con-

ducted to determine the reports and papers which have been recently published

within the area of blade-row aerodynamic interaction. A computer-based litera-

ture search system was used to automate the selection of suitable reports and

articles. Many papers were discovered which were chiefly concerned with aero-

dynamic performance or off-design flows. This review was limited to those con-

tributions devoted to studies of airfoil response and aeroelastic applications.

EXPERIMENTAL STUDIES

Experimental methods to measure the unsteady aerodynamic response of tur-
bomachines has traditionally emphasized study of the flow field within oscil-

lating airfoil cascades (refs. l to 7). Such investigations are concerned with



measuring the blade motion-dependent unsteady aerodynamic response of blades,
Only recently has the investigation of the response of airfoils to nonuniform
flow fields, termed motion-independent aerodynamics, been studied. The growth
in experimental study of such flows is primarily due to the advances which have
been made in the area of computer-based cata acquisition and hlgh-response
measurement systems.

Investigation of aerodynamic interaction within full-scale components
requires instrumentation which can perform at extremely high frequencies. The
majority of the experimental work in thi_ area has been conducted on low-speed,
large-scale models of components to allow for better data resolution at reason-
able frequencies. Most of the experimen!s employ high-response semiconductor
pressure transducers embedded within the surfaces of the blades to measure the
instantaneous pressures. Several of the experiments also use pneumatic or hot-
wire probe traverses to measure the pres_,ure and velocity fields entering and
leaving the blade rows.

A detailed comparison of each of the experimental papers and the specific
problem which was studied is included as table I. This table organizes the
publications into more specific areas of aerodynamic interaction. Most of the
recent experimental research related to lerodynamic interaction can be genera]-
ized into two categories: (I) blade-row interaction, and (II) blade viscous
wake characteristics. A detailed descri_)tion of each of the research papers
related to these categories follows.

Categoty I. Blad_-row Interaction

The published research related to blade-row aerodynamic interaction stud-
ies the level of interaction which occurs between upstream and downstream
blade rows. These effects are typically described as viscous wake passing
from the upstream blade row (stator) to the downstream row (rotor) and down-
stream blade row pressure disturbances which propagate to the upstream blades.
The measurement of the effects of these phenomena is obtained by determining
the instantaneous pressure distributions on the surfaces of the airfoils.
These instantaneous pressures can then be integrated over the blade surface to
estimate the unsteady blade loads and phase.

Adachi and Murakami (ref. 8) describe an experiment where rotating rods
were used to generate wakes which were [,assed over stationary compressor blades
(fig. 3). The data from this experimeni includes the variation in unsteady
blade lift coefficient and drag coeffic:ent as a function of time for one wake
passing period (fig. 4). This experime_t indicated that the lift forces
resulting from wake passing over the blades can vary by as much as 5 percent.
Measurements of the three-dimensional unsteady velocity vectors within the com-
pressor passages were also provided for several time increments which show the
passing of the wake and the distortion i)f the wake as it passes through the
passage.

Insight into the effect of wake pa_sing on the unsteady pressure field
within practical compressor blading has been reported by Fleeter et al.
(ref. 9). A high speed, full scale compressor stage was tested which could
accommodate differences in the axial sp_cing between stator and rotor rows to
measure the effect of spacing on intera_tlon. The effect of wake passing had



a strong influence on the pressure distribution and total unsteady loads on the
downstreamstator blades. This particular machine had realistically high
reduced frequencies (based on semichord, k = 8 to 20). One full stator blade
passage was instrumented (fig. 5) and a cross-wire probe was used to traverse
upstream of the stator row to measure the incoming wake. Figure 6 shows a
typical unsteady pressure distribution for the stator blade. The emphasis of
this experiment was to determine the effect of axial spacing on the wake-
induced unsteady loads. The data from this study found that the axial spacing
effect was minor.

An investigation of the effect of loading and incidence on forcing func-
tions within a multi-stage machine was reported by Capeceand F1eeter
(ref. 10). Their study was chiefly concerned with measuring the forcing func-
tions caused by wakes shed from upstream blading. The actual forcing function
was assumedto be due to the perturbation velocity which results when the
rotor wake is transformed to a stationary stator reference frame (fig, 7). The
dependenceof the wake velocity defect upon the level of blade loading and the
indexing of the stator vanes was measuredalong with the unsteady pressures
(fig. 8) resulting from the wake forcing function (fig. 9). Blade response was
found to be strongly coupled to the level of machine loading and the resulting
perturbation velocity forcing function. An indirect observation of the poten-
tial interaction of the downstreamblades was reported but there was little
elaboration.

Binder et al. (ref. 11) presented a qualitative study of the distortion
and trajectory of stator wake segments as they pass through a turbine rotor.
This research utilized a laser-2-focus velocimeter to measurethe flow field
and turbulence intensity within the rotor passage, The instantaneous measure-
ments of the velocity vectors show how the stator wakes are chopped by the
rotor blades and how the wake segment distorts and forms in-passage vortices
which pass through the rotor passage, These counter-rotating in-passage vorti-
ces have been postulated by other researchers and they are a result of the
fluid migration in the relative frame towards the rotor blade suction surface.
The significant effects of high turbulence and unsteady behavior upon the com-
plex flow phenomenawithin the rotor passage are well demonstrated.

An experiment to measure the rotor wake which was generated within a
single-stage transonic fan stage has been reported by Hathawayet a1.
(ref. 12). This experiment utilized a Laser Anemometrymethod to measure the
velocity field aft of a rotor blade. The results from this experiment indi-
cate that this rotor wake shed Karmanvortices aft of the rotor blades and the
results correlated well with a classical vortex model. These results indicate
that the nature of the fluid flow within the wake must by carefully modeled to
determine if the source of the velocity field variation is due to the viscous
effects from the upstream blade or due to the shed vortices from the blade.

Gallus et al. (ref. 13) reports how the aerodynamic interaction within a
single-stage subsonic compressor was measured. Stationary and rotating probes
were used to measure the wake profiles while surface pressure transducers
sensed the surface pressure response of the airfoils. Figure I0 shows an
illustration adapted from this report which describes the cascade configuration
and the transducer measurementlocations (denoted as MDnand RSn). The experi-
ment covered several flow Machnumbersand reduced frequencies. Results from
this experiment indicated that the stator steady lift force varied by as much
as 6 percent due to the passing of the wakes from the upstream rotor. The



tlme-varying lift force for the stator blade is plotted on figure II for con-

figurations which had both inlet guide vanes (IGV) in place and removed. The

presence of the IGV's had a clear influence upon the unsteady stator loads and
this demonstrates the multi-stage nature of the unsteady flows in these
machines.

An investigation of the effect of rc,tor-stator interaction and the influ-

ence of the secondary flows between these blades was reported in Sharma, et al.

(ref. 14). The experiment on the UTRC Large-Scale Rotating Rig (LSRR) measured

the flow effects which occurred between the blade-rows of a l-I/2 stage turbine

rig. The emphasis of this test was to determine the influence of the blade-row
flow distortions caused by the tip and endwall vortices and the boundary layer
growth within the machine. This particular report was also concerned with
regard to how these blade-row secondary flows affected the heat transfer per-
formance and the fluid losses in the macFine. They found that the tip and hub
vortices from the upstream stator have a fairly high strength and that they
retain much of their form even after pas_ing through the downstream rotor
passage.

Dring et al. (ref. 15) describe an experiment which measured the interac-

tion within a large-scale subsonic turbir_e stage. Their experiment provides a

large amount of detailed data regarding +he unsteady flow resulting from
stator/rotor interaction. A scaled stator/rotor pair of blades were instru-

mented (fig. 12) with surface pressure transducers over the blade stator trail-

ing edge and rotor leading edge regions. The measured steady and unsteady
pressure distributions for both the stator and the rotor cascades are presented

on figure 13. The unsteady pressure envelope over the surface of the blades

indicates that the effect of the stator wake passing over the rotor blades

results in a highly unsteady region over the suction surface, particularly at

the rotor leading edge. The effect of ti_e potential disturbance from the rotor

blade upon the stator blade results in a high unsteadiness at the stator trail-

ing edge pressure surface. Unfortunatel'¢, the results are presented in a man-

ner which distorts the unsteady character- of the flow. Specifically, the

unsteady pressure coefficient is nondime_isionalized with respect to inlet

dynamic pressure for the rotor, and exit dynamic pressure for the stator.

Although the essential unsteady characte,- of the flow is still obvious.

Category II. Blade Visccus Wake Characteristics

A significant level of experimental research has been conducted over

recent years in order to determine proper empirical models which may be used to

predict the velocity wakes which emanate from compressor, fan, and turbine air-
foils. This experimental data proves that under many circumstances, a fairly

simple model can be used to adequately describe the wake structure. It should

be noted that much of this work is limited to development of wake models for

isolated cascades and blade-rows. Direct extension to a multi-stage configura-

tion should be taken cautiously because of the inherently complex nature of

wake generation, transport, and diffusicn in such machlnes.

The following papers all describe the experimental techniques used to

measure the velocity field immedlately aft of isolated and cascaded airfoils

and include references to the slmilarit) _ laws which govern the flow fleld. All



of these experimental studies utilize hot-wire and pneumatic probes to tra-
verse the wake region and measure the steady velocity vectors and pressure
magnitudes.

Study of the near-wake (<30 percent chord) and far wake velocity profiles
was reported by Hobbs et al. (ref. 16). Measurement of the wake structure and
the dissipation within a large-scale linear compressor cascade for 13 down-
stream axial locations (fig. 14) was reported. The far wake velocity profile
was found to obey a Gaussian similarity correlation very well. Attempts to
model the near-wake profiles met little success because of the complexity of
this flow region. Figure 15 contains a plot showing the velocity wake profile
for several downstream traverses compared to a simple gaussian distribution.
The nature of the near-wake velocity profiles is dominated by strong turbulent
mixing and is not as easy to correlate as the far-wake region. It is note-
worthy that most practical turbomachinery are designed such that the blade-row
spacing causes the blades to operate under these near-wake conditions.

An experimental study of the three-dimensional structure of the viscous
wakes behind a compressor rotor was reported by Dring et al. (ref. 17). This
experiment measured the wakes, boundary layers, and turbulence intensity behind
a large-scale compressor rotor. The wake character was studied at four down-
stream axial locations for several different machine flow coefficients. Meas-
urement of the fluid velocity vectors (magnitude and direction) within the wake
region were provided (fig. 16). A conclusion from this experiment was that
the radial flow effects for such a machine are very strong and that such non-
ideal flow properties question the validity of using the conventional "strip
theories" for streamline calculations. The wake structure was found to be
dependent strongly upon the rotor loading conditions. The wake defect and
semi-width increase with rotor loading (lower flow coefficient).

The structure of the viscous wakes within a turbine stage was investigated
by Joslyn et al. (ref. 18). This experiment studied a I-I/2 stage (vane-rotor-
vane) turbine configuration (fig. 17) in which traverses were performed aft of
each blade row. The generated wake from the first vane was found to still have
a sustained influence on the flow exiting the second vane row. This data con-
firms the observations that the wake passing influence is not a localized phe-
nomena but that it may effect the flow character downstream from the source.
Plots of the velocity profiles aft of the first vane and the last vane details
the influence of the first vane wake on the second vane exit flow (fig. 18).

A large amount of experimental research related to measuring the develop-
ment of viscous wakes behind airfoils and cascades has been performed at
Pennsylvania State University (refs. 19 to 22). Raj and Lakshminarayana
(ref. 19) focused on determining the applicability of empirical similarity
laws for estimating viscous wake shape. Their experiments measured the wake
profiles and turbulence intensity at nine axial distances aft of a cascade of
cambered airfoils (fig. 19). The effect of incidence showed that variation in

the airfoil angle of attack leads to a strong asymmetry of the wake shape
(fig. 20). The gaussian similarity law was found to describe the far wake
structure very accurately. An algebraic Reynolds stress model was introduced
in an attempt to model the turbulent near-wake flow properties.



GENERALCCMMENTS

Manyexperimental investigations of :)lade-row interaction and the related
transports mechanismshave been reported <)n in the technical literature over
the past decade. Some experiments have been performed with the sole purpose
of measuring the actual stator/rotor inte-action (refs. 13 and 14). Others
intended to study the separate processes which are involved in blade-row inter-
action, such as wake passing (ref. 8), or secondary flow effects (ref. 15).

The range of experiments reported on in this paper was intentionally lim-
ited to test configurations on machinery which represent modern turbomachinery
designs. Cascades were typically cambered and in the case of turbines there
was sufficient thickness and loading to consider these cascades as practical
for turbomachinery. Most of the tests were performed on large-scale, low-speed
machines which were intended to represent configurations of compressors and
turbines. Because of the large dimensioral scale and the low speeds, some of
these rigs exhibited poor aerodynamic performance which may not have demon-
strated the intended flow phenomena as closely as expected.

The experimental evidence suggestin_i that similarity exists for the far-
wake region behind airfoils is well demorstrated. The Gaussian similarity cor-
relation proposed by Lakshminarayana (refs. 19, 20, and 22) has a strong
supporting experimental basis. The deper_dence of the wake profile on airfoil
loading has also been modeled accurately Further development of accurate
descriptions of the turbulent behavior ol the fluid, especially within the dis-
sipative near-wake region, is required.

The following observations regardin,_ the areas which require further
experimental investigation and character:zation are based on the results of
this survey.

(1) Experiments which measure the sJrface response of blade-rows within

full-scale multi-stage machinery for botq high-speed compressors and turbines
is needed.

(2) Measurement of the level of distortion of wakes passing through multi-
ple blade-rows would be useful for devel_)pment of analytical and CFD models of
wake distortion within turbomachines.

(3) Advancements in flow measurement (i.e., laser velocimetry, tracer gas

injection) would prove helpful for the unobtrusive measurement of wake profile

development and passing.

(4) An experiment which measures the overall aerodynamic environment (pas-

sage velocity field, blade surface pressures, wake traverses, etc.) could pro-
vide a valuable benchmark for further rEsearch into the blade-row interaction

problem.

ANALYTICAl_ STUDIES

Analytical and computational metho(Is for prediction of unsteady aerody-

namic response of airfoils to flow disturbances are traditionally based on

applications of aerodynamic small-disturbance theory. Recently, computational

fluid dynamic (CFD) methods which solve the unsteady. Euler and Navier-Stokes



equations for interacting blade rows have grown in popularity. In both of
these approaches the aerodynamic forcing function is due to either upstream
wakes passing down through the cascade or potential-field disturbances which
pass from downstream into the cascade. The description of the analytical stud-
ies of these phenomena will be classified as either (I) blade-row interaction
and (II) CFD simulations. A quick reference table is provided (table If) which
compares many of the analytical models reviewed within this survey.

Category I. Blade-Row Interaction

Classical unsteady aerodynamics methods form the foundation of analytical

models of aerodynamic interaction. These conventional methods are often of

limited practical use for turbomachinery due to the assumptions of small-

disturbance theory; flat airfoils, zero incidence, and low camber. Such

methods can prove applicable for subsonic fan stages which typically meet such

limitations, but general application to loaded compressors and turbines should

be considered carefully.

Theoretical models of blade-row interaction assume that the disturbances

resulting from adjacent blade-row motion can be modeled as a small perturbation
within the velocity or pressure fields impinging upon the airfoil. Such dis-
turbances are referred to as vortical gusts (velocity field disturbances) or
acoustic gusts (pressure or potential-field disturbances).

The vortical gust is a mathematical model of the effect of a wake upstream
of the airfoil or the cascade passing into and over the airfoils. Vortical
gusts may only travel from upstream to downstream and they are convected with
the mean fluid flow. The potential-field excitation is modeled as an acoustic
gust which may impinge upon the blading from either upstream or downstream.
Most of the theoretical models discussed within this category can account for
either vortical or acoustic gusts.

The original theoretical formulation for the vortical gust problem was

introduced by Kemp and Sears (ref. 23). In their analysis of an isolated air-

foil they utilized incompressible small-disturbance assumptions to simplify

the problem of an airfoil passing through a transverse sinusoidal gust. This

work found that the pressure response of the airfoil varied drastically with

the speed with which the gust passes over the airfoil.

Several researchers followed this original application of small-
disturbance aerodynamics to account for cascade effects (refs. 24 and 25).
Meyer (ref. 26) extended the simple gust model to a more general nonlinear
model of stator wakes impinging upon a downstream rotor blade. Fleeter
(ref. 27) accounted for the effects of fluid compressibility on the response
of cascades to flow disturbances.

Further extension to the general problem of inflow velocity distortions
was presented by Horlock (ref. 28). His model utilized simple momentum conser-
vation principles to demonstrate the analysis of the airfoil lift response to
the passing of both a transverse and a chordwise gust. The incoming flow dis-
turbance was modeled as a variation in velocity normal and tangent to the blade
chord (fig. 21). The combination of these two-dlmensional flow distortions
Introduced a new concept for the generalized wake passlng problem. A more rig-
orous approach to model wake effects in turbomachinery cascades was developed



by Naumannand Yeh (ref. 29) and similarly by Hendersonand Horlock (ref. 30)
who accounted for camberedairfoils at incidence.

One major shortcoming of these aerod?namic models is that the wake dis-
turbance (vortical gust) is assumedto corvect through the cascade undisturbed
by the surrounding flow (referred to as a "frozen gust"). Goldstein (ref. 31)
has advanced a theoretical development to prove that the passing of a wake dis-
torts significantly over airfoils of nont_ivial shape. This analysis considers
the effect of the meanpotential flow on _he passing gust and how the gust
interacts with the meansteady flow. Goldstein and Atassi (ref. 32) have
applied this analysis to the general problem of a two-dimensional gust
(fig. 22) passing over an airfoil which has thickness and camber distributions.
Atassi (ref. 33) then limited this theory to the case of an isolated airfoil at
low incidence to indicate that the interacting gust problem could by modeled
by using linear superposition of the sepalate meanflow effects due to camber,
thickness, and incidence.

Namba(ref. 34) has developed a three-dimensional lifting surface theory
to estimate the acoustic response of subsonic rotating blade-rows to incident
inlet flow gusts. This formulation is COrlcerned primarily with the acoustic
problem and transmission of sound waves resulting from vortical gusts. Signif-
icant variation in blade unsteady loads along the blade span were reported.
This three-dimensional effect diminished ,{s the reduced frequency was
increased. The resulting unsteady blade loads were found to be strongly
dependent upon the nature of the underlyiqg acoustic modes for the given aero-
dynamic conditions.

An analytical model of blade-row interaction and the potential-field
interaction was first investigated by Kemp and Sears (ref. 35). They applied
classical incompressible unsteady aerodynamic models to predict the unsteady
effects induced due to adjacent blade rows undergoing relative motion. Their
analysis suggested that the effect of the potential-field fluctuations of the
downstream blade passing was stronger than the effect of the upstream blade
wake passing over the downstream blades. This mathematical formulation found
that the unsteady loads due to potential-field interactions decay exponentially
with increasing cascade spacing. The variation in rotor and stator harmonic
lift components versus axial spacing is shown on figure 23. Osborne (ref. 36)
has extended their original work to account for the effects of compressibility
up to M = 0.9.

A parallel effort to predict the unsteadiness due to potential-field
interaction has been studied by Parker (_efs. 37 and 38) with specific emphasis
on the acoustical problem and noise reduction. This model was based on solving
the two-dimensional wave equation for vaTiations in blade-row separation. The
studies which Parker presented were prim_,rily intended for use as a design tool
to minimize noise generation.

A more complete study of the combined vortical and acoustic gust problem

was reported by Kaji and Okazaki (ref. 3!i!). This method used an acceleration

potential theory in conjunction with smail-disturbance assumptions to predict

the compressible unsteady aerodynamics due to both wake and pressure distur-

bances entering a cascade. The emphasis of this approach was for the determi-
nation of the reflection and transmission of acoustic waves which would

generate unacceptable noise. This method allows for the acoustic gust to
travel into the cascade from either upst,_eam or downstream.



Smith (ref. 25) has presented a compressible unsteady aerodynamic model
which accounts for the incident gust problem and prescribed blade motion.
This model included both the vortical and acoustic gust problem for a cascade
but emphasized the resulting unsteady blade loads as opposed to the acoustical
transmission through the cascade. This approach has been utilized by many
recent aeroelastic analyses because of the ease of use of the model. The model
is based on the small-disturbance approximation which limits the overall appli-
cability to turbomachinery which have thin, uncambered airfoils.

Category II. CFD Simulations

The CFD approach to aerodynamic interaction attempts to simulate the
interaction problem by solving the conservation laws (continuity, momentum,
energy) for a stator and rotor blade simultaneously. These solutions model the
relative motion between a moving disturbance or rotating blade rows by incre-
mentally solving the governing equations in a time-accurate fashion. This
type of solution typically solves the Euler or Navier-Stokes equations by using
fundamental time integration schemes. The majority of the results are repre-
sented in the time domain.

A simplified approach to investigate the transport of a wake segment as
it passed through a turbine stage was described by Joslyn, et al. (ref. 40).
Their method used an inviscid streamline procedure to trace how an infinitely
thin wake centerline distorts as it passes through the potential field of a
blade row. An example of such a wake line distortion is shown on figure 24
for a turbine rotor. The contour lines on this figure indicate different time
levels. A conceptual description of the application of a drift function to
describe the distortion and transport of wake segments within the inviscid flow
is included in this paper. This relatively simple procedure illustrates the
complex trajectory and kinematics of upstream flow disturbances as they pass
through a cascade.

The computational simulation of wake passing through a cascade has been
demonstrated by Giles (ref. 41). This approach modeled the wake velocity
defect using the gaussian similarity form of the profile at the upstream bound-
ary of a turbine cascade. The solution then proceeded with time to simulate
how the wake disturbance distorts and travels through the turbine passage.
This method simulates the full passage of an upstream flow disturbance as it
reacts to the blading and convects through the blade passage. A contour plot
showing the entropy contours at several time levels is included on figure 25.
The computed flow behavior of the wake within the turbine cascade was compared
qualitatively with experimentally observed wake distortion data and found to
emulate the essential flow properties. Of particular interest for this
approach was the time transformation technique which was used to allow for the
analysis of cascades with unequal pitch ratios.

Korakianitis (refs. 42 and 43) has used the above computer program to
investigate the effect of cascade solidity on the wake induced and potential-
field induced unsteadiness of several parametric cascade configurations. He
has found that the effects of these two aerodynamic forcing functions on the
resulting unsteady blade loads are strongly dependent upon the cascade load-
ing, geometry, and flow conditions. This report in particular was concerned
with the level of unsteady blade loads compared to the steady loading level of
the blade.

I0



Ooslyn et al. (ref. 18) have modifie_1 a fairly simple cascade potential
analysis program to allow for pressure-field disturbances which pass into the
cascade through the downstreamboundary. Results from this program indicate
that the effect of such potential-field ulsteadiness can be modeled relatively
accurately by properly modifying relatively simple full-potential codes.

Warfield and Lakshminarayana (ref. 2]) have used a Navier-Stokes program
with a modified turbulence model to numerically predict the boundary layer and
wake formation behind a three-dimensional airfoil cascade. The emphasis of
their work was to develop an appropriate closure model to capture the turbulent
flow regimes which occur in the viscous sublayer and near-wake regions, Their
turbulence model is based on an algebraic Reynolds stress formulation. The
predicted circumferential and radial near-wakes are predicted fairly well when
compared to other Navier-Stokes solvers and to somemeasuredwake profiles.

The simulation of an inviscid stator/rotor blade interaction was reported
by Lewis et al, (ref. 44). Their two-din_ensional numerical simulation of a
turbine vane upstream of a rotor blade performed a coupled solution of the
Euler equations for the full stage. This approach utilizes an iterative scheme
which solves the conservation laws in the upstream cascade separately from the
solution for the downstream cascade. The flowfield information from the two

cascades is shared through patched solution meshes (fig. 26) which translate
relative to one another to simulate bladE_ motion. This solution scheme demon-
strates the strong unsteady effects of p(>tential-field interaction between the
two blade rows. Unsteady surface pressure envelopes are provided for the sta-
tor and rotor blades of a turbine stage _howing the regions of high unsteadi-
ness (fig. 27).

Investigation of the effect of stat(>r/rotor interaction and shock wave

passage within a highly loaded turbine i,_,reported by Giles (ref. 45). The

author uses the same technique to transf(_rm the time-dependent terms of the

unsteady Euler equations as was presented in his prior work (ref. 39). This

approach uses two solution grids for the stator and rotor which are coupled by

using a "shearing" interface between the grids to permit relative motion. An

application of this program for a transo_ic turbine stage details the strong

influence that the stator trailing-edge _;hock wave has upon the rotor flow.

Figure 28 contains surface pressure distributions for the stator and the rotor

blades at several time increments which ,_how the highly nonsteady character of

the interaction. Giles reports that the rotor blade lift coefficient varies by

up to 40 percent due to the interaction _ith the stator's convected vorticity

and shock waves. The oblique shock waves which reflect from the trailing edge

of the stator blade case a highly discontinuous pressure field within the down-

stream rotor blade passage.

Further work on the coupled analysis of stator/rotor interaction for both

inviscid and viscous two-dimensional flow was presented by Oorgenson and Chima

(ref. 46). This approach uses patched, overlaid solution meshes for each blade

cascade (fig. 29) which are translated in time to simulate blade motion. The

passing of the rotor mesh past the stator mesh from startup is computed several

times to allow for the start-up oscillations to die out and for the solution to
become periodic. The simulation of the Flow within the SSME turbine stage is

included which indicated that the effect of the viscous wake passing induced

much higher unsteady blade loads than the potential-field interaction effect.

Plots showing the variation in lift force for the stator and the rotor blade of

the SSME stage is shown on figure 30. Isomach contours for a time instant of
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this simulation is included as figure 31. There is currently no experimental
data to correlate these computational results with.

A full simulation of the three-dimensional unsteady viscous flow within a
turbine stage was developed by Rai (ref. 47). This investigation presents a
thin-layer three-dimensional Navier-Stokes simulation of the interaction
between a turbine vane and rotor blade. The formulation accounts for the span-
wise transport of the fluid over the blades and to a lesser extent, the effects
of the hub and endwall boundary layer regions. The turbine stage modeled is
the same as that reported experimentally by Dring et al. (ref. 11). The author
states that the method used is limited to stages which have equal pitch ratios
for the rotor and stator. Direct comparison with the experimental data men-
tioned previously is impossible because the tested machine has unequal cascade
pitches for the rotor and stator rows.

An important area of current research is focused on developing unsteady
analyses by using linearized aerodynamic models. Such linearized models are
appealing because of the rapid computational time when compared to full time-
accurate solutlons. This feature combined with the good correlation with
unsteady measurements presents the linearized approach as an attractive method
for des|gn-oriented applications. Verdon and Caspar (ref. 48) and Verdon
(ref. 49) describe the development of a linearized unsteady potential theory.
Likewise, Hall and Crawley (ref. 50) have advanced a linearized unsteady Euler
method for turbomachinery.

GENERAL COMMENTS

Many of the analytical models of blade-row interaction outlined above
have been compared with some form of experiment. In most instances, the spe-
cific formulation presented by the authors proves very limited especially when
searching for a universal model applicable to practical turbomachinery. The
CFD approaches provide a thorough simulation of the fluid mechanical processes
which occur for such machines, although their application is now largely pro-
hlbited by the excessive computational requirements.

Theoretical solutions have been developed (refs. 23, 25, and 27) which
can be used to study the complexity of the effect of wake passing over thin-
airfoils. A primary shortcoming of these methods is that the blading is
assumed to be unloaded (i.e., flat plat, zero incidence) and that the wake
remains undistorted as it passes over the airfoil. A more general theoretical
model for distorting wake passage was advanced by Goldstein (ref. 31) who
assumed that the unsteadiness could be modeled as a small perturbation from the
mean potential flow field.

Developments in the CFD techniques to solve the governing equations for
internal flows lends hope to enhancing the capability for simulating blade-row
interaction. Several investigators (refs. 41, 44, and 45) have proven that the
simulation of stator/rotor blade-row interaction can be performed using an
incremental solutlon of the unsteady Euler equations. Research has also been
reported (refs. 46 and 47) concerning solution of the stator/rotor interactlon
problem by applying coupled solution of the thin-layer Navier-Stokes equations
In a time-accurate fashion.

12



A major drawback of using the manycomputational methods to quantify the
aerodynamic forcing functions is the prohibitive computer time and memory
requirements needed for these solutions. CFDsimulation will prove to be an
important vehicle to study the specific f_ow phenomenaassociated with aerody-
namic blade-row interaction and may fill the vacancy in experimental data which
is required to generate suitable semi-emp:rical models for these aerodynamic
forcing functions. But the excessive comi)utational requirements of these tech-
niques will prohibit their application to specific problems concerned with
aeroelasticity.

The linearized methods fulfill an important role in providing a cost-
effective alternative for predicting unsteady aerodynamic response to aerody-
namic excitations. The chief difficulty in applying such models is that a
fully coupled solution for adjacent blade-rows is not currently available.
Such methods can be used successfully if the effects of blade-row interaction
can be modeled as the basic aerodynamic excitations of (l) wake passing and
(2) incident potential-field disturbances. Recently, the aeroelasticity
research community has embraced linearized methods for such stability and
forced response analysis problems because of the aforementioned advantages.

The following general conclusions regarding the current state of analytl-
cal modeling of blade-row interaction are provided as results from this survey.

(1) The traditional small-disturbance models for wake passing over cas-
cades (vortical gusts) are severely limited due to the inherent assumptions of
zero loading and a simple "frozen" gust formulation.

(2) Analytical models of potential-field interactions between blade-rows
(acoustic gusts) have been advanced but they are primarily intended for acous-
tic performance and noise generation.

(3) Analytical models of a distorting wake-blade interaction (e.g.
Goldsteln) could be compared with a CFD _Timulation to determine the range of
applicability of the theoretical model.

(4) A full comparison of an unsteady flow problem using a linearized
method (e.g. Verdon, Hall) and a time-accurate CFD simulation is necessary to
define the appropriate aerodynamic conditions where each method is more gener-
ally applicable.

(5) Unsteady Euler simulation of wake passing and stator/rotor interac-
tion has shown that the convected vorticity from the upstream blade wake can
capture the viscous wake effect reliably using an inviscid formulatlon.

(6) CFD simulation of stator/rotor interaction using unsteady Euler and
Navier-Stokes solutions have been proposed but with little direct comparison
to experimental results.

(7) Further developments in algorithms and computer architectures for CFD
methods are necessary to allow for the CFD techniques to be used as a replace-
ment for some of the expensive experimental studies.

13



SUMMARYOF RESULTS

The research activity within the field of turbomachinery blade-row
interaction provides somedetailed experimental observations of the unsteady
phenomena. Analytical modeling of these samephenomenanow relies on CFD
methods to simulate the "real-world" problems of aerodynamic interaction in
turbomachinery.

An attempt to formulate analytical or empirical models to describe the
influences of blade-row aerodynamic forcing functions will require significant
experimentation, both physical and numerical. The predictions from someof the
stator/rotor interaction CFDcodes described in this report suggest that the
technology for numerically simulating the interaction problem is maturing. The
current technology for CFDtime-accurate solutions requires excessively long
computer times and large memorylimits. Advancementsin CFDalgorithms and
computer technology are reducing these requirements.

Application of the original theoretical models of wake passing and
potential-field interaction should generally be avoided. Manyof the early
models, especially of potential interaction, have severely limiting assumptions
which may limit their g_neral application to turbomachinery. Thesemodels may
be:used to investigate the essential physics of the unsteady disturbance, but
use as a defining tool for forcing functions should be done carefully.

Linearized aerodynamic models can be applied to turbomachinery for spe-
cific flow regimes and are cost-effective in terms of computational require-
ments. A linearized method is most amenablefor coupling within a structural
dynamic response system as required for aeroelasticity work. A disadvantage
of such linearized methods may be because of the limited applicability to prob-
lems free of strong shock motion and flows which occur at very large reduced
frequencies.

Definltion of specific forcing function levels due to (I) viscous wake
passlng and (2) potential-field disturbances could be correlated based on the
information obtained from this survey.

WakePassing Forcing Functions

The shape and dissipation of velocity wakes is well-defined and the
response of both trlvia] and complex airfoils to such a passing disturbance can
be studied using tlme-accurate CFD. Such CFDsimulations can be used to create
slmple semi-empirlcal models which describe blade unsteady loads from wakes and
their dependenceon cascade geometry and flow conditions.

Potential-Field Disturbance Forcing Functions

The contribution of potential-field disturbances to unsteady blade loads
in &n embedded blade-row is not well understood. Traditional analytical models
applying small-dlsturbance assumptions are not technically strong enough to
capture the phenomena. Computational methods based on utilizing rapid full

14



potential codes to simulate potential interaction have been sh)wn to be accu-

rate. Full simulation of the time-accurate Navier-Stokes techniques may be

used, but the computational effort is very prohibitive,
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TABLE [I. - COMPARISON OF AERODYNAMIC INTE!-_ACTION RESEARCH ANALYTICAL STUDIES

Referenced

authors

Kemp and Sears

(ref. 23)

Smith (ref. 25)

Fleeter

(ref. 27)

Naumann and Yeh

(ref. 29)

Goldstein and

Atassi

(ref. 32)

Kemp and Sears

(ref. 35)

Osborne

(ref. 36)

Giles

(ref. 41)

Warfield and

Lakshminarayana

(ref. 21)

Lewis et al.

(ref. 44)

Giles (ref. 45)

Jorgenson and

Chima (ref. 46)

Rai (ref. 47)

Analytical

classification

Wake passing

(trans. gust)

Wake passing &

potential

distributions

(trans. gust)

Wake passing

(trans. gust)

Wake passing

(trans. long.

gust)

Wake passing &

distortion

Potential

interaction

Potential

interaction

Wake passing &

distortion

Wake character

and distor-

tion

Aerodynamic

interaction

Aerodynamic

interaction

Aerodynamic

intersection

Aerodynamic

intersection

Tt )retical

fcrmulation

Small-disturbance

in( ,pressible

Small-disturbance

in( pressible

Small-disturbance

COl )ressible

SmalT-disturbance

in(ompressible

Smal -disturbance

in, ompressible

Smal -disturbance

in ompressible

Smal

COl

-disturbance

_ressible

Two-dimensional

un. teady Euler

Three-dimensional

Na ier-Stokes

Two- imensional

un ready Euler

Two-Jimensional

un_;teady Euler

Two-LJ imen s ional

th _n-layer

NaJier-Stokes

Thre:_-dimensional

th,n-layer
Napier-Stokes

Configuration

Iso|ated, unloaded

thin-airfoil

Cascade, unloaded

thin-airfoils

Cascade, unloaded

thin-airfoils

Isolated, loaded

cambered thin-

airfoil

Isolated, loaded

cambered thin-

airfoil

Cascades, stator/

rotor thin

airfoils

Cascades, stator/

rotor thin

airfoils

Turbine cascade

Compressor cascade

Turbine stator/

rotor overlaid

grids

Turbine stator/

rotor shearing

grids

Turbine stator/

rotor overlaid

grids

Turbine stator/

rotor overlaid

grids
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[10]).
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FORCING FUNCTION (FROM [10]).
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FIGURE 12, - LOCATION OF SURFACE PRESSUI-:ETRANSDUCERS FOR STATOR AND ROTOR
BLADES (FROM [14}).
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5 UNSTEAD1 PRESSURE ENVELOPE I
1.0

27



v -

FIGURE 14. - TEST CONFIGURATION FOR LINEAR COMPRESSOR CASCADE

SHOWING _AKE TRAVERSE STATIONS (FROM [16]).
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FIGURE 15. - WAKE PROFILE CORRELATION COMPARING SEVERAL

TRAVERSE STATIONS WITH SIMILARITY LAW (FRO_t[16]).

FSV = FREE STREAM VELOEITY: V = WAKE VELOCITY; Vo =

WAKE CENTERLINE VELOCITY.
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ING (Cx/Um = O.G5), (FR_ [17]). V = RELATI_

VELOCITY; Um = WHEEL SPEED (MIDSPAN); Cp =

PRESSURE C_FFICIENT.
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FIGURE 22. - ARBITRARY GUST PASSING OVER CAI_IBEREDI'OLATED BLADE AND POTENTIAL FIELD (FROM [32]I.
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FIGURE 23. - STATOR AND ROTOR UNSTEADY LIFT HARMONIC

COMPONENTS AS FUNCTIONS OF AXIAL SPACING, PITCH

RATIO= 1.- (FROM {35]).
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ROTOR (FROM {40|).
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FIGURE 25. - ENTROPY CONTOURS COMPUTED USING UN-

STEADY EULER 2-D CODE WITH WAKE PASSING, HODSON'S

TURBINE (ADAPTED FROi'i[41]).

33



VANE

PHASE-

LAGGED

NONREFLECTIVE--

BLADE

_ LAGGED !
• \ PERIODIC _d
-,,,,

_-- OVERLAP

FIGURE 26. - TURBINE VANE-ROTOR OVERLAID MESHES AND BOUNDARY CONDITIONS FOR 2-D STATOR/

ROTOR EULER COMPUTATION (FROM [44]).
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FIGURE 29. - OVERLAID, TRANSLATING SOLUTION

MESHES FOR COMPUTATIONAL SOLUTION OF ROTOR/

STATOR NAVIER-STOKES SIMULATION (FROM [qG]).
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